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ABSTRACT
We consider the problem of maintaining a large set of top-k
rankings over the update stream of a database. The rankings
stem from top-k aggregation queries that are given a-priori
based on the application scenario, for instance created along
dimensions of a traditional data warehouse, for efficient au-
tomated reporting/detection of changes. The focus on only
the top part of a ranking enables efficient buffering tech-
niques to limit expensive interactions with the underlying
database, while still guaranteeing correct top-k rankings at
all times. This is achieved by employing conservative rank
(score) estimates of previously unseen items that are not
in the top-k result so far. The proposed family of mainte-
nance algorithms further exploits the relations between the
monitored rankings known from multi query optimisation.
We present results of a preliminary experimental evaluation
using TPC-H data to study the performance of our algo-
rithms.

1. INTRODUCTION
Making sense out of massive amounts of data for business

intelligence and similar tasks is crucial for decision making
processes. Data is gathered in database systems that enable
efficient ad-hoc queries or is periodically loaded into data
warehouses that enable exploration of performance measures
along multiple dimensions. As interesting data is not as-
sumed to be static, a live (near realtime) monitoring of in-
teresting aspects of data is required, hence posing the prob-
lem of continuously maintaining queries against arriving up-
dates, for (semi)-automated reporting or reacting to specific
events. To render the maintenance feasible in presence of
large amounts of dynamic information, the objective is to
focus only on the essence of information and to maintain it
– instead of wasting resources in the aim of keeping every-
thing up to date. Arguably the most natural way to con-
dense large amounts of information into a conceivable form
is the computation of rankings, where users can focus on the
top-k portion of the results, that show an outstanding (in
a good or bad sense) performance. Among the most promi-
nent examples on how top-k results can be efficiently com-
puted is the work on threshold queries for aggregation queries
(c.f., [2, 5, 3]). In contrast to the computation task, we con-
sider the continuous maintenance of top-k rankings using a
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thin monitoring layer of algorithms that aim at avoiding re-
computations of the rankings inside the underlying database.
We show that the restriction to the top-k portion of a rank-
ing enables efficient ranking maintenance as the majority
of updates is expected not to affect the top-k result. The
queries/rankings we consider in this work stem from top-k
OLAP queries over the various dimensions of the data, what
is commonly inspected in a traditional data warehouse.

We introduce a generic framework that maintains the top-
k results produced by the queries using multi-query optimi-
sation and view maintenance techniques. This framework
has two important characteristics, (i) It limits the interac-
tion with the data back end, aiming at handling OLTP and
top-k maintenance of OLAP queries at the same time. (ii) It
guarantees exact top-k results at any time by conservatively
estimating the score of instances that do not belong in the
top of the ranking.

The paper is organised as follows. In the remainder of this
section we introduce the data and query model and present
the problem statement. In Section 2 we discuss related work.
In Section 3 we describe our algorithms and present and
discuss experimental results in Section 4. Section 5 concludes
the paper and gives an outlook on ongoing and future work.

1.1 Query Model
We consider monitoring queries that stem from traditional

OLAP-style aggregation queries, like the following over prod-
uct and sales information, computing the aggregated sales
volume (price*quantity) for groups of product type, brand
and country.

SELECT P.type, P.brand, S.country,
SUM(P.price*S.quantity)

FROM products P, sales S
WHERE P.id = S.pid
GROUP BY P.type, P.brand, S.country
ORDER BY SUM(P.price*S.quantity)

To compute the top-k product types, with the lowest rev-
enue, of each brand in each country several top-k aggregate
queries will stem from the above data cube query. These
queries will look like the following

SELECT P.type, SUM(P.price*S.quantity)
FROM products P, sales S
WHERE P.id = S.pid

AND P.brand=X AND S.country=Y
GROUP BY P.type
ORDER BY SUM(P.price*S.quantity)
LIMIT K



The attribute P.type is the attribute for which the top-k
results are tracked and we call it primary attribute. The at-
tributes P.brand and S.country are used to create a filtering
condition and we call them secondary attributes. The values
X and Y are instances of these attributes. One such query
is created for every combination of (P.brand, S.country) in-
stances. The combinations having any number of attributes
bound to ANY are considered also valid. ANY is a term
used to symbolise that the attribute is not bound to a spe-
cific instance for example, the product types with the least
revenue in each country that are of ANY brand.

1.2 Problem Statement
We assume a large number of top-k aggregate queries that

produce a set of top-k rankings. Each ranking orders in-
stances from a primary attribute according to a score com-
puted as the aggregation of the values of other (one or more)
attributes (numeric). The rankings are limiting their quali-
fying results using conditions created by binding secondary
attributes to their values (see above).

We consider a stream of incoming updates that insert
new tuples in the database. For simplicity we assume that
each update contains information about all attributes in-
volved in the rankings (primary, secondary and numeric).
This assumption can be easily withdrawn by creating a pre-
processing step which will take the update and will obtain
the missing information from the database. Thus, the up-
dates we consider are of the following form

(updated instance, properties, added value)

where the updated instance is the instance of the primary
attribute, properties are the instances of the secondary at-
tributes and added value is the change in the score of the
updated instance imposed by the update.

Our goal is to maintain the exact top-k results for each
ranking at any time by limiting the interaction with the
database.

2. RELATED WORK
The work we consider in this paper is related to the prob-

lem of processing continuous top-k queries over a data stream
(e.g. [6], [13]). However, work in this area considers that the
aggregated score is computed using different attributes of
a single tuple, and using sliding window semantics to de-
termine its lifetime. In our work, the aggregated score is
computed with respect to multiple previously seen tuples
for a specific instance, and no sliding window semantics are
assumed.

Zhang et al. [17] compute aggregated scores using the past
tuples. They have multiple aggregate queries that differ only
in the group-by condition. Our queries differ in the filtering
condition. To some extent the two sets of queries are related
to each other since the filtering condition can be transformed
to a group by condition and vice versa. The main difference
to our work is that they consider the accessed elements to be
clustered in time. This allows them to track a small number
of elements in each time period and forget about the others
until they see them again.

Metwally et al. [11] compute the top-k elements in a stream
by tracking N elements in a way that resembles our esti-
mates algorithm. In this work, the position of an element
in the ranking is determined by the number of occurrences
of the element in the stream. In our work, the position of

an element in the ranking is determined by aggregating a
numeric value that accompanies the element in each of its
occurrences. This results in elements with few occurrences
having big aggregated scores and vice versa. In this case the
method in [11] has no way to find the correct top-k results.

A lot of work also exists on how to evaluate top-k rank-
ings accessing as few raw data as possible. Most of these
works are based on the family of threshold algorithms by
Fagin et al. [3]. Despite all the available work on efficiently
creating top-k rankings (see the survey of Ilyas et al. [8] for
an overview) the top-k aggregate rankings having group-by
conditions have not attracted enough attention. To the best
of our knowledge the only existing approaches are [9] and
[16]. The main difference to our work is that they compute
top-k rankings on demand while we maintain them contin-
uously.

The works in [4] and [10] attempt to create systems that
unify stream processing techniques with techniques from tra-
ditional database systems (row store and column store re-
spectively). Both of these systems could be used in com-
bination with our methods. Any of them could be used to
replace the current RDBMS and then our algorithms could
be applied on top.

Athanasoulis et al. in [1] develop a method to make pos-
sible online updates in a data warehouse. In contrast to our
work their focus is on how to exploit new available hardware
in order to achieve it.

Nagaraj et al. in [14] have a setting very similar to ours.
They organise the queries in a tree structure very similar to
the lattice we create. In this work they try to make queries
execution faster by sharing the aggregate computations. Our
top-k queries do not allow for such sharing since top-k results
do not necessarily overlap.

Techniques to select the views to materialise in order to
make query execution faster have been proposed in many
works (e.g. [12], [7]). These works exploit the shared parts
of the queries to be maintained. Although our queries are
very similar with each other their top-k nature does not
allow us to use these techniques.

3. APPROACH
We now present algorithms that maintain the top-k por-

tion of the rankings of interest. Note that rankings are triv-
ially maintained in the presence of updates performing in-
sertions to tables that are not used by the corresponding ag-
gregate queries by ignoring the updates. All other updates
can potentially affect the top-k results and, thus, need to be
handled by the algorithms.

3.1 Naive Approach
In a naive approach each ranking that receives an update

checks whether the updated instance exists in its top-k rank-
ing. In case it does, it updates its score. Otherwise, a query
is issued to the database to obtain the aggregated value for
the missing instance and decide whether it should enter the
top-k results. Since the top-k results are assumed to con-
tain a rather small portion of all instances most updates
will need the execution of a query resulting in a significant
degradation of the system’s performance.

3.2 Estimates Algorithm
An optimisation can be achieved exploiting the top-k na-

ture of the rankings. Each ranking needs to have exact scores
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Figure 1: In-Memory structures: the actual top-(k+N) rank-
ing (left) and the estimates for the previously unseen entities
(right).

only for the top-k instances. Hence, the rest of them can have
an estimated score. This is the idea in the Estimates Algo-
rithm (EA). If a score for an updated instance is not already
known, the algorithm assigns to it an initial estimated score,
called basic score. To this basic score the additional amount
contained in the update is added (aggregated). For the se-
lection of the basic score each ranking tracks a number of
N extra instances, i.e. each ranking stores the exact scores
for top-(k+N) instances. The worst score of any instance in
these N extra instances is selected to be the basic score. This
conservative estimate assures that an instance belonging in
the top-k part is never missed. When the estimated score
(the basic score + the additional quantity) of an instance
qualifies for the top-k results, its real score does not nec-
essarily qualify too. In order for this to be verified a query
that returns the real score of the instance is executed.

All instances being assigned an estimated score are stored
in a structure, called Buffer, until their scores are verified
against the database. This is done such that the rankings
can consider the cumulative increase in an instances esti-
mated score when it is updated multiple times. If the Buffer
becomes full no more instances can be added to it and the
algorithm falls back to the Naive Approach. To avoid that,
when the Buffer is found to be full a query is issued that
verifies all instances currently in it. After that, the Buffer is
reset to empty allowing again the addition of new instances.

The in-memory structures necessary for the EA are shown
in Figure 1. The idea of EA is described by the pseudocode
of Algorithm 1. Every time we transfer an instance to the
top-k or to the N extra instances another instance is removed
to keep the sizes of these sets unchanged.

The reduction in queries achieved by EA is dependant on
the score difference (gap) between the worst score of any
instance in the top-k and the worst score of any instance
in the N extra. The bigger this gap, the more updates an
instance can get without qualifying for the top-k instances.
It also depends on the number of instances with estimated
scores that can be stored in memory. The more instances
stored the fewer times the Buffer needs to be reset.

Algorithm 1: Estimates Algorithm (EA)

input: i: the instance that is affected
change: the change in the instance’s score

if i ∈ top-k then
Update score

else if i ∈ Extra then
Update score;
if score exceeds top-k threshold then

Transfer i to top-k
end

else if i ∈ Buffer then
Update score;
if score exceeds top-k threshold then

Execute query ;
if score exceeds top-k threshold then

Transfer i to top-k
else if score exceeds extra threshold then

Transfer i to N extra
end

end

else
Compute estimation;
Add i to Buffer

end

3.3 Groups Algorithm
The queries we examine, apart from focusing on the top-k

portion of the results, have a special relation with each other.
Bunches of them stem from the same data cube query i.e.
they use the same primary and secondary attributes, and
the same aggregation. These queries can be organised in a
subgroups lattice according to the tuples qualifying to their
filtering condition. For the products-revenue example query,
introduced in Section 1.1, assuming that there are only two
instances of countries, e.g. {’Y’, ’W’} and a single instance
of brand e.g. {’X’} the lattice will be the one in Figure 2.

country=ANY
AND

brand=ANY

country=’W’
AND

brand=ANY

country=’Y’
AND

brand=ANY

country=ANY
AND

brand=’X’

country=’Y’
AND

brand=’X’

country=’W’
AND

brand=’X’

Figure 2: Subgroups lattice organising the top-k aggregate
queries using the same primary attribute, and the attributes
country and brand in the filtering condition

The basic characteristic of the queries organised in a lat-
tice is that they share the same tuples. Each query lying in
a join in the lattice is satisfied by the union of all tuples of
the queries lying below it and each query lying in a meet
point is satisfied by the intersection of the tuples satisfying
queries lying above it. This partial order relation between
the aggregate queries is an immediate consequence of the
filtering conditions of the queries and can help decreasing
the interaction with the underlying database.

Coming again to the products-revenue example, consider
an update that causes an increase of x units in the quan-
tity sold for product type tu. The supremum ranking of the



lattice (i.e. the ranking having the filtering condition coun-
try=ANY AND brand=ANY ) is the first ranking to know
about this update. The product type tu does not exist in the
top-(k+N) results and its estimated score qualifies for the
top-k results. In this case a query is issued for the product
type tu. Instead of executing a query that will return the
aggregated score of tu the ranking asks for the tuples that
compose the final score executing the following query

SELECT P.type, P.brand, S.country, P.price*S.quantity
FROM products P, sales S
WHERE P.id = S.pid AND P.type=tu

The ranking uses the results to compute the score of tu
and forwards them to the rankings lying in lower levels in
the lattice. Each ranking uses the qualifying received tuples
to compute the score of the instance. This way a query can
be saved and/or an instance can be removed from the Buffer.
In case the ranking issuing the query has any filtering condi-
tion it will use it when issuing the query to filter any tuples
not qualifying to it, these tuples are of no use to it or the
rankings connected to it. If the aggregation function used
by the rankings is distributive, e.g. SUM or COUNT, the
ranking can query the score of each individual group instead
of the single tuples saving the cost of computing the score
in each ranking separately.

We call this algorithm Groups Algorithm (GA). The idea
of GA is described by the pseudocode of Algorithm 2. The
re-use of the results is also attempted when a query that
verifies all instances in the Buffer is executed. This allows
other rankings to free space in their Buffer without executing
any queries.

Algorithm 2: Groups Algorithm (GA)

input: i: the instance that is affected
change: the change in the instance’s score
tuples: the tuples comprising the various group for the

affected or removed from estimates instances as sent from an
upper level node

Use sent tuples to remove from estimates as many
instances as possible

if i ∈ top-k then
Update score

else if i ∈ Extra then
Update score;
if score exceeds top-k threshold then

Transfer i to top-k
end

else if tuples 6= ∅ then
Compute score using sent tuples;
if score exceeds top-k threshold then

Transfer i to top-k
else if score exceeds extra threshold then

Transfer i to N extra
end

else if i ∈ Buffer then
Update score;
if score exceeds top-k threshold then

Execute query ;
if score exceeds top-k threshold then

Transfer i to top-k
else if score exceeds extra threshold then

Transfer i to N extra
end

end

else
Compute estimation;
Add i to Estimates

end

4. EXPERIMENTS
We conducted experiments using the TPC-H dataset [15],

We used part.p partkey as the primary attribute and cus-
tomer.c mktsegment, orders.o orderpriority and region.r name
as the secondary attributes. The selected aggregated func-
tion was sum and the numeric attribute over which we com-
puted the scores was lineitem.l quantity. In total 216 re-
lated queries have been created and organised in a lattice.
The queries involved five relations. All methods are multi-
threaded and implemented in Java 1.6.

We measure the average time needed to process each up-
date and the number of queries executed. We divide the
queries in two groups. In the first group belong the queries
executed to verify an instance when its estimated score qual-
ifies for the top-k results, called Verification Queries. In the
second group belong the queries executed when the buffer is
found to be full. We call these queries Buffer Reset Queries.
The value that can be added in each update varies between
1 and 50.

EA and GA were tested under different configurations
varying the gap between the worst score of any instance
in the top-k instances and the worst score of any instance in
the N extra instances, and the size of the Buffer. For the gap
we tested the values 100% and 200%, where a value of 100%
means that the gap is at least equal to the maximum value
that can be added in any update, i.e. 50. The Buffer size in
each ranking was set to 100, 500, 1000, 5000 and 10000.

In all experiments we performed 30,000 updates. We cre-
ated two groups of updates. In the first group each update
affects (i.e. increases the score) a random entity. In the sec-
ond group the updates follow the 80-20 rule. According to
this rule, 80% of the updates affect 20% of the instances.
The goal of using two different sets of updates is to get an
initial understanding of the kind of workloads our methods
are more effective.

4.1 Updates following the 80-20 rule
In the left plot shown in Figure 4 we can see the change

in the number of queries executed as the size of the Buffer
and the gap change. As expected the number of the Buffer
Reset queries decreases with the increase of the Buffer size.
The GA executes fewer Buffer Reset queries compared to
EA. This happens because in GA the results of the Buffer
Reset queries are forwarded to all rankings lying in lower
levels in the lattice. So, these rankings have the chance to
remove instances from their Buffer before it becomes full.
This difference is more prominent for the smaller Buffer size.
For gap 200% (i.e. two times the maximum possible addition
in an instances score) the Buffer Reset queries increase. This
happens because as the gap increases fewer estimated scores
qualify for the top-k instances, thus more instances with
estimated scores are added to the Buffer and so the Buffer
becomes full more often. In the right plot of Figure 4 the
Verification queries are shown. In this plot we can verify
that the estimated scores of the instances qualify for the
top-k results more often when the gap is smaller. As for
the Buffer Reset queries GA executes also fewer Verification
queries compared to EA.

In the plot shown in Figure 3 we can see the average time
needed to process each update. For gap 200% the fact that
our rankings have this special relation does not seem to be
important since both EA and GA have the (almost) same
performance. For gap set to 100% GA is faster for small
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Buffer size but gets slower as the Buffer size increases. This
happens because an increase on the Buffer size results in a
decrease in the number of Buffer Reset queries so, GA can-
not benefit much from re-using the results of these queries
to remove instances from the Buffers of other rankings. Ad-
ditionally, the Verification queries take so little time to ex-
ecute that the effort made to exchange the results between
the rankings and compute the scores processing the received
tuples overtakes the benefit of avoiding the execution of Ver-
ification queries. However, in a setting where the execution
of Verifcation Queries is very slow the GA algorithm is ex-
pected to achieve better performance.

For the Naive Approach 239985 Verification queries are
executed and the average time needed to process each up-
date is more than 4 secs. These results are not included in
the plots because they shadow the differences between our
algorithms.

4.2 Random Updates
In the plots shown in Figure 6 we can see the number

of queries executed when the updates are random. The less
Verification queries observed, compared to the 80-20 case,
are because when the updates are random the instances are
less likely to be affected multiple times before the Buffer
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is reset. Thus, it is less likely an estimated score to grow
enough to need the execution of a Verification query.

In the plot shown in Figure 5 we can see the average time
needed to process each update. What is interesting to ob-
serve is that the time needed to process each update when
the updates are random either decreases constantly as the
Buffer size increases or has a slight increase for very big size
of the Buffer. On the contrary, in the 80-20 case, the increase
in time is more acute. Again the reason is that, when the up-
dates are random, the instances have lower probability to be
affected twice before re-setting the Buffer. Hence, keeping an
instance in memory longer (bigger sizes of the Buffer) does
not cause its estimated score to become big enough to qual-
ify for the top-k results and to cause a Verification query.
So, as long as the number of instances in the Buffer does
not cause the Buffer Reset query to become very slow, in-
creasing its size can only be beneficial, with respect to time.
On the other hand, in the 80-20 updates, keeping instances
longer in memory results in many Verification queries which
deteriorate the runtime.

For the Naive Approach 239977 Verification queries are
executed and the average time needed to process each up-
date is more than 4 secs. Again, these results are not in-
cluded in the plots so that the differences between our algo-
rithms can be shown clearer.

4.3 Additional Instances
Of course the befit achieved is not for free. Both EA and

GA store some additional instances. The number of these
instances depends on the selection of the gap and the size
of the Buffer. The plot in Figure 7 shows the change in the
number of additional instances for the various sizes of the
Buffer when the gap is set to 100% and 200%. In the plot
it is obvious that setting the gap to 200% needs a lot more
space. Since in both cases the number of additional instances
stored to the Buffer is the same the difference is solely due to
the increase in the gap. Especially in the very specific rank-
ings (those binding all three secondary attributes to some
instance) doubling the gap may result in having even five
times more instances because of the small scores assigned
to them. The line ALL shows the maximum number of in-
stances (grouped using the filtering attributes) existing in
the database. We use it as a baseline to give a notion of the
extra storage cost.
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5. CONCLUSIONS AND ONGOING WORK
We addressed the problem of maintaining top-k rankings

in the presence of fast updates arriving in an underlying
database. Such a setup calls for methods that provide accu-
rate (exact) top-k rankings while limiting the communica-
tion with the database itself. We presented two algorithms to
solve that maintenance problem, which are centred around
computing score estimates for previously unseen instances
and leveraging containment relations for results recycling.
Although our results are preliminary, they provide useful
insights on the impact of the various parameters in the ef-
fectiveness of our methods.

In ongoing work we aim at tailoring the parameters of
the algorithms to the observed distribution of scores in each
ranking. In particular, we work on trading-off performance
and quality of the maintained results. One way of approach-
ing this is to model the score distribution in the tail of rank-
ings and to use it to compute more realistic estimated scores,
at the risk of introducing errors to the top-k ranking.
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